Yield stress in amorphous solids: a mode-coupling-theory analysis.

نویسندگان

  • Atsushi Ikeda
  • Ludovic Berthier
چکیده

The yield stress is a defining feature of amorphous materials which is difficult to analyze theoretically, because it stems from the strongly nonlinear response of an arrested solid to an applied deformation. Mode-coupling theory predicts the flow curves of materials undergoing a glass transition and thus offers predictions for the yield stress of amorphous solids. We use this approach to analyze several classes of disordered solids, using simple models of hard-sphere glasses, soft glasses, and metallic glasses for which the mode-coupling predictions can be directly compared to the outcome of numerical measurements. The theory correctly describes the emergence of a yield stress of entropic nature in hard-sphere glasses, and its rapid growth as density approaches random close packing at qualitative level. By contrast, the emergence of solid behavior in soft and metallic glasses, which originates from direct particle interactions is not well described by the theory. We show that similar shortcomings arise in the description of the caging dynamics of the glass phase at rest. We discuss the range of applicability of mode-coupling theory to understand the yield stress and nonlinear rheology of amorphous materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear bands as manifestation of a criticality in yielding amorphous solids.

Amorphous solids increase their stress as a function of an applied strain until a mechanical yield point whereupon the stress cannot increase anymore, afterward exhibiting a steady state with a constant mean stress. In stress-controlled experiments, the system simply breaks when pushed beyond this mean stress. The ubiquity of this phenomenon over a huge variety of amorphous solids calls for a g...

متن کامل

Dynamics of shear-transformation zones in amorphous plasticity: energetic constraints in a minimal theory.

We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. As in the earlier versions of the STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability between jammed and plastically deforming states. We show how an especia...

متن کامل

Diffusive Dynamicsof Binary Lennard-Jones Liquid in the Presence of Gold Nanoparticle: A Mode Coupling Theory Analysis

Molecular dynamics simulation has been performed to analyze the effect of the presence of gold nanoparticle on dynamics of Kob-Anderson binary Lennard-Jones (BLJ) mixture upon supercooling within the framework of the mode coupling theory of the dynamic glass transition. The presence of gold nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution ...

متن کامل

Connecting Local Yield Stresses with Plastic Activity in Amorphous Solids.

In model amorphous solids produced via differing quench protocols, a strong correlation is established between local yield stress measured by direct local probing of shear stress thresholds and the plastic rearrangements observed during remote loading in shear. This purely local measure shows a higher predictive power for identifying sites of plastic activity when compared with more conventiona...

متن کامل

Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.

We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2013